Anglais      Chinois      Français      Allemand      Indonésien      Espagnol
Chercher

9 - Prévalence vraie estimée à l'aide d'un test avec un échantillonneur de Gibbs

Cette analyse utilise unBayésien approche et Échantillonneur de Gibbs to estimate the true animal-level prevalence of infection based on testing of individual (not pooled) samples using a test with imperfect sensitivity and/or specificity. The analysis requires prior estimates of true prevalence, test sensitivity and test specificity as Distributions de probabilité bêta, et sortiesdistributions postérieures pour la prévalence, la sensibilité et la spécificité. VoirJoseph et al. (1995) for more details.

Les entrées requises pour cette analyse sont:

The number of samples tested must be a positive integer and the number of positive samples must be an integer >=0 and <= the number of samples tested. Alpha and beta parameters for prevalence, sensitivity and specificity must be >0 and upper and lower confidence limits must be >0 and <1. Starting values for the numbers of true positives and false negatives must be integers >= zero and <= the number of positive samples and the number of negative samples, respectively. The number of iterations and the number discarded must both be positive integers (>0) and the number discarded must be less than the number of iterations.

LeÉchantillonneur de Gibbs est utilisé pour estimer ledistributions de probabilité postérieure of true prevalence, sensitivity and specificity that best fit the data and the prior distributions provided.

Prior estimates of the true prevalence and test sensitivity and specificity may be based on expert knowledge or on previous data. These estimates are specified as Distributions de probabilité bêta, avec paramètresalpha et beta. Beta probability distributions are commonly used to express uncertainty about a proportion based on a random sample of individuals. In this situation, if x individuals are positive for a characteristic out of n examined, then the alpha and beta parameters can be calculated as alpha = x + 1 and beta = n - x + 1. Alternatively, alpha and beta can be calculated using the Utilitaire de distribution bêta, provided estimates of the mode and 5% or 95% confidence limits are available from expert opinion.

Les sorties de l'échantillonneur de Gibbs sont des distributions de probabilité postérieures pour:

Ces distributions sont décrites par leur:

Because the Gibbs sampler estimates prevalence iteratively, based on the data and the prior distributions, it may take a number of itérations for the model to converge on the true value. Therefore, a specified number of initial iterations must be mis au rebut (not used for estimation) to allow the model to converge on the true values. This number must be sufficient to allow convergence, and should be at least 2000 - 5000. It is also important to carry out an adequate number of iterations to support inference from the results. Suggested minimum values for the total number of iterations and the number to be discarded are provided, but can be varied if desired.

Cette analyse peut prendre plusieurs minutes, en fonction du nombre d'itérations requises.


« Précédent Next »


Contenu
1 Introduction
2 Aperçu
3 Méthodes bayésiennes vs fréquentistes
4 Taille de la piscine fixe et tests parfaits
5 Taille de la piscine fixe et Se & Sp connu
6 Taille du pool fixe et Se & Sp incertain
7 Taille du pool variable et tests parfaits
8 Prévalence groupée à l'aide d'un échantillonneur de Gibbs
9 Vraie prévalence avec un test
10 Prévalence vraie estimée à l'aide de deux tests avec un échantillonneur de Gibbs
11 Estimation des paramètres pour les distributions bêta antérieures
12 Taille de l'échantillon pour une taille de groupe fixe et un test parfait
13 Taille de l'échantillon pour la taille du pool fixe et pour la sensibilité et la spécificité du test connues
14 Taille de l'échantillon pour une taille de groupe fixe et une sensibilité et une spécificité de test incertaines
15 Simuler l'échantillonnage pour une taille de pool fixe
16 Simuler l'échantillonnage pour des tailles de groupes variables
17 Hypothèses importantes
18 Les estimations de prévalence groupées sont biaisées!