These methods all use frequentist approaches to estimate prevalence and confidence limits, assuming a fixed pool size and perfect (100%) test sensitivity and specificity, as described below.
Diese Methode (Methode 2 vonCowling et al. (1999) oder Sacks et al. (1989)) assumes 100% test sensitivity and specificity and fixed pool size. Confidence limits are based on a normal approximation and may be <0 for low prevalence values.
Prävalenz wird geschätzt als:
und der Standardfehler (SE (p)) wird als Quadratwurzel der Varianz geschätzt, gegeben durch:
where:
Asymptotische Konfidenzgrenzen werden mit der normalen Näherung berechnet:
where ist die standardisierte Normalvariable, die der gewünschten Konfidenzgrenze entspricht.
Erforderliche Eingaben für diese Methode sind:
Pool size, number of pools and number of pools positive must be positive integers and the number of positive pools must be less than the number of pools tested. Upper and lower confidence limits must be >0 and <1.
Ausgänge include:
The algorithm used to estimate prevalence and confidence limits fails if either all or none of the pools are positive. In these cases the point estimates are 100% and 0% respectively.
Diese Methode (Methode 3 vonCowling et al. (1999)) assumes 100% test sensitivity and specificity and fixed pool size. Exact confidence limits are calculated based on binomial theory, so that confidence limits are never <0 or >1.
Prävalenz und Varianz werden wie fürMethode 1:
und:
where:
Exact confidence limits are estimated by calculating the corresponding binomial confidence limits for the proportion of positive pools and then transforming these back to individual-level prevalence values using the equation for estimating prevalence from Methode 1.
Erforderliche Eingaben für diese Methode sind:
Pool size, number of pools and number of pools positive must be positive integers and the number of positive pools must be less than the number of pools tested. Upper and lower confidence limits must be >0 and <1.
Ausgänge include:
The algorithm used to estimate prevalence and confidence limits fails if either all or none of the pools are positive. In these cases the point estimates are 100% and 0% respectively.